Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.722
Filtrar
1.
Toxins (Basel) ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822608

RESUMO

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.


Assuntos
Anticorpos Monoclonais/farmacologia , Síndrome Hemolítico-Urêmica/prevenção & controle , Fragmentos Fab das Imunoglobulinas/imunologia , Toxina Shiga II/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Apoptose/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Glomérulos Renais/citologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Proteínas Recombinantes , Toxina Shiga I/imunologia , Toxina Shiga I/toxicidade , Toxina Shiga II/toxicidade , Escherichia coli Shiga Toxigênica/imunologia , Células Vero
2.
J Am Soc Nephrol ; 32(11): 2697-2713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716239

RESUMO

The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.


Assuntos
Envelhecimento/fisiologia , Podócitos/citologia , Adulto , Idoso , Animais , Autofagia , Restrição Calórica , Ciclo Celular , Forma Celular , Células Cultivadas , Senescência Celular , Dano ao DNA , Feminino , Expressão Gênica , Humanos , Inflamassomos , Glomérulos Renais/citologia , Glomérulos Renais/crescimento & desenvolvimento , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Modelos Animais , Oligopeptídeos/farmacologia , Estresse Oxidativo , Podócitos/metabolismo , Ratos , Morte Celular Regulada , Sirtuínas/metabolismo , Especificidade da Espécie , Adulto Jovem
3.
FASEB J ; 35(10): e21907, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516679

RESUMO

This study investigated the effect of apela on renal function and anti-inflammatory effect on whole body and kidney tissue in mice with type I cardiorenal syndrome (CRS). The murine type I CRS model was established and apela was subcutaneously infused for two weeks. Cardiac and renal functions were evaluated by echocardiography and blood biochemistry, respectively. The systemic and renal inflammatory responses were examined with molecular biological and histological methods. Human renal glomerular endothelial cells (RGECs) were used to evaluate the adhesion effect of monocytes in vitro. Compared to mice from the control group (CRS + vehicle), the plasma levels of N-terminal pro-brain natriuretic peptide, blood urea nitrogen and creatinine were significantly decreased, while the mean left ventricular ejection fraction was increased in apela-treated CRS mice at the 4th week. The expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in the circulation and kidney was decreased in apela-treated mice compared with control mice, and apela improved cardio-renal pathology in mice with type I CRS. Additionally, Apela significantly suppressed the expression of MCP-1, TNF-α, intercellular adhesion molecule-1 and vascular intercellular adhesion molecule-1 in RGECs induced by angiotensin II (Ang II), and inhibited the promoting effect of Ang II on the adhesion of THP-1 cells to RGECs. Western blot results showed that the expression of phosphorylated nuclear factor kappa B (phospho-NFκB) in CRS mice was increased, but the expression of phospho-NFκB was down-regulated after apela treatment. Furthermore, apela significantly inhibited the Ang II-mediated increase in phospho-NFκB expression in RGECs in vitro, but the administration of an apelin peptide jejunum receptor (APJ) inhibitor blocked the inhibitory effect of apela. This study revealed that apela improves cardiorenal function and reduces systemic and renal inflammatory response in type I CRS mice and the apela/APJ system may alleviate renal inflammatory responses by inhibiting the NFκB signalling pathway.


Assuntos
Síndrome Cardiorrenal/complicações , Síndrome Cardiorrenal/patologia , Inflamação/complicações , Inflamação/prevenção & controle , Rim , Hormônios Peptídicos/metabolismo , Animais , Coração/fisiologia , Coração/fisiopatologia , Humanos , Inflamação/patologia , Rim/patologia , Rim/fisiologia , Rim/fisiopatologia , Glomérulos Renais/citologia , Camundongos , NF-kappa B/metabolismo , Fosforilação , Células THP-1
4.
J Am Soc Nephrol ; 32(11): 2795-2813, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34479966

RESUMO

BACKGROUND: Podocyte depletion precedes progressive glomerular damage in several kidney diseases. However, the current standard of visual detection and quantification of podocyte nuclei from brightfield microscopy images is laborious and imprecise. METHODS: We have developed PodoSighter, an online cloud-based tool, to automatically identify and quantify podocyte nuclei from giga-pixel brightfield whole-slide images (WSIs) using deep learning. Ground-truth to train the tool used immunohistochemically or immunofluorescence-labeled images from a multi-institutional cohort of 122 histologic sections from mouse, rat, and human kidneys. To demonstrate the generalizability of our tool in investigating podocyte loss in clinically relevant samples, we tested it in rodent models of glomerular diseases, including diabetic kidney disease, crescentic GN, and dose-dependent direct podocyte toxicity and depletion, and in human biopsies from steroid-resistant nephrotic syndrome and from human autopsy tissues. RESULTS: The optimal model yielded high sensitivity/specificity of 0.80/0.80, 0.81/0.86, and 0.80/0.91, in mouse, rat, and human images, respectively, from periodic acid-Schiff-stained WSIs. Furthermore, the podocyte nuclear morphometrics extracted using PodoSighter were informative in identifying diseased glomeruli. We have made PodoSighter freely available to the general public as turnkey plugins in a cloud-based web application for end users. CONCLUSIONS: Our study demonstrates an automated computational approach to detect and quantify podocyte nuclei in standard histologically stained WSIs, facilitating podocyte research, and enabling possible future clinical applications.


Assuntos
Computação em Nuvem , Processamento de Imagem Assistida por Computador/métodos , Nefropatias/patologia , Glomérulos Renais/citologia , Podócitos/ultraestrutura , Animais , Automação , Contagem de Células , Núcleo Celular/ultraestrutura , Conjuntos de Dados como Assunto , Aprendizado Profundo , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Reação do Ácido Periódico de Schiff , Ratos , Especificidade da Espécie
5.
Phytomedicine ; 91: 153663, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34358759

RESUMO

BACKGROUND: Diabetic Kidney Disease (DKD) is a common complication of diabetes and a leading cause of end-stage renal disease progression. Therefore, therapeutic strategies are desirable to mitigate the progression of disease into more severe consequences. Hypothesis/Purpose:Tinospora cordifolia is a traditionally known antidiabetic plant; however, its effect against DKD remains unexplored. Therefore, in the present study, we assessed the efficacy and mechanism of action of Tinospora cordifolia extract (TC) against DKD. METHODS: The molecular interaction of the various phytoconstituents of TC with PPARγ were analyzed in silico. The effect of TC was studied on the viability, cell cycle, and gene expressions (PPARγ, TGFß, and αSMA) in high glucose treated NRK-52E and SV40 MES13 cells. Further, streptozotocin-induced diabetic rats were treated with TC for eight weeks, and the effects on different biochemical, histological and molecular parameters were studied. RESULTS: In silico analysis revealed the integration of various phytoconstituents of TC with PPARγ. It further increased PPARγ and decreased TGFß and αSMA expressions in NRK-52E and SV40 MES13 cells. In diabetic rats, TC improved the fasting blood glucose, serum urea, and creatinine levels. It also lowered the urine microalbumin and advanced glycation end products (AGEs) levels. Histopathological studies revealed the preventive effect of TC on degenerative changes, mesangial proliferation and glomerular hypertrophy. Further, it reduced the inflammation and fibrotic changes in the kidney tissue estimated by various markers. The kidney tissue and gene expression analysis revealed the augmented levels of PPARγ after TC treatment. CONCLUSION: In conclusion, TC exerted the protective effect against DKD by inhibiting inflammation and fibrogenesis through the activation of PPARγ dependent pathways.


Assuntos
Nefropatias Diabéticas , PPAR gama/metabolismo , Extratos Vegetais , Tinospora , Animais , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Glomérulos Renais/citologia , Túbulos Renais/citologia , Camundongos , Extratos Vegetais/farmacologia , Ratos , Tinospora/química
6.
Chem Res Toxicol ; 34(9): 2079-2086, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34464088

RESUMO

Diabetic nephropathy (DN) is a common and severe complication of diabetes, impacting millions of people worldwide. High concentrations of serum glucose-associated injury of renal glomerular endothelial cells (rGECs) are involved in the DN pathogenesis. We found that exposure to high glucose increased the expression of angiotensin II type 1 receptor (AT1R) in human rGECs (hrGECs). To block the increased AT1R level, we used the newly developed antagonist Telmisartan. This study investigated whether Telmisartan possessed a beneficial effect against high-glucose-induced insults in hrGECs and explored the underlying mechanism. Our findings indicate that Telmisartan ameliorated high-glucose-induced mitochondrial dysfunction by increasing mitochondrial membrane potential. Also, Telmisartan attenuated oxidative stress by reducing the levels of two oxidative stress biomarkers 8-hydroxy-2 deoxyguanosine (8-OHDG) and malondialdehyde (MDA). Further, we found that Telmisartan prevented high-glucose-induced expression of NADPH oxidase 2 (NOX-2). Interestingly, exposure to high glucose resulted in the increased endothelial permeability of renal glomerular endothelial cells, which was mitigated by treatment with Telmisartan. Mechanistically, these effects are mediated by the MLCK/MLC-2/occludin signaling pathway. In the leptin-deficient db/db diabetic mouse model, we proved that Telmisartan treatment ameliorated the reduction of occludin and albuminuria. In conclusion, our findings demonstrate that Telmisartan possesses protective effects on high-glucose-induced injury to renal glomerular endothelial cells; its antagonizing of AT1R could be a potential therapeutic target in diabetic nephropathy.


Assuntos
Albuminúria/tratamento farmacológico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Telmisartan/uso terapêutico , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Glomérulos Renais/citologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Ocludina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo
7.
Toxins (Basel) ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34437406

RESUMO

Shiga toxin-producing E. coli (STEC) produces Stx1 and/or Stx2, and Subtilase cytotoxin (SubAB). Since these toxins may be present simultaneously during STEC infections, the purpose of this work was to study the co-action of Stx2 and SubAB. Stx2 + SubAB was assayed in vitro on monocultures and cocultures of human glomerular endothelial cells (HGEC) with a human proximal tubular epithelial cell line (HK-2) and in vivo in mice after weaning. The effects in vitro of both toxins, co-incubated and individually, were similar, showing that Stx2 and SubAB contribute similarly to renal cell damage. However, in vivo, co-injection of toxins lethal doses reduced the survival time of mice by 24 h and mice also suffered a strong decrease in the body weight associated with a lowered food intake. Co-injected mice also exhibited more severe histological renal alterations and a worsening in renal function that was not as evident in mice treated with each toxin separately. Furthermore, co-treatment induced numerous erythrocyte morphological alterations and an increase of free hemoglobin. This work shows, for the first time, the in vivo effects of Stx2 and SubAB acting together and provides valuable information about their contribution to the damage caused in STEC infections.


Assuntos
Proteínas de Escherichia coli/toxicidade , Síndrome Hemolítico-Urêmica/etiologia , Toxina Shiga II/toxicidade , Subtilisinas/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Síndrome Hemolítico-Urêmica/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Glomérulos Renais/citologia , Túbulos Renais Proximais/citologia , Masculino , Camundongos Endogâmicos BALB C
8.
Bioengineered ; 12(1): 4805-4815, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338149

RESUMO

Diabetic nephropathy (DN) is a complication of diabetes that induces the development of end-stage renal disease (ESRD). The pathogenesis of DN is reported to be closely related to the activation of the NOD-like receptor 3 (NLRP3) inflammasome in renal glomerular endothelial cells. Omarigliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor developed for the management of type II diabetes, it has been recently reported to possess a significant anti-inflammatory property. This study aims to explore the potential therapeutic effects of Omarigliptin on DN. We established an in vitro injury model in human renal glomerular endothelial cells (HrGECs) using high glucose (HG). The severe cytotoxicity and increased oxidative stress in HrGECs induced by HG were pronouncedly reversed by the introduction of Omarigliptin. Furthermore, the activated NLRP3 inflammasome and the excessive production of interleukin 18 (IL-18) and interleukin 1ß (IL-1ß) in HrGECs induced by incubation with HG were pronouncedly reversed by the introduction of Omarigliptin, accompanied by the activation of the AMPK/mTOR signaling pathway. After the co-administration of the adenosine monophosphate-activated protein kinase α (AMPKα) inhibitor, compound C, the protective effects of Omarigliptin against HG-induced NLRP3 inflammasome activation and production of pro-inflammatory factors were dramatically abolished. Taken together, our data revealed that Omarigliptin ameliorated HG-induced inflammation in renal glomerular endothelial cells through suppressing NLRP3 inflammasome activation mediated by AMPKα.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Compostos Heterocíclicos com 2 Anéis/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piranos/farmacologia , Monofosfato de Adenosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Humanos , Inflamassomos/genética , Glomérulos Renais/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais/efeitos dos fármacos
9.
Bioengineered ; 12(1): 5184-5194, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34402375

RESUMO

Diabetic nephropathy (DN) is a common complication of diabetes. Tamsulosin is a selective α1-AR antagonist. α1-AR is expressed widely in kidney tissues and has displayed its various physiological functions. However, whether Tamsulosin has affects DN is unknown. To our knowledge, this is the first time it has been examined whether Tamsulosin possesses a beneficial effect in high glucose-challenged glomerular endothelial cells (GECs). Firstly, we found that Tamsulosin reduced high glucose-induced expressions of TNF-α, IL-6, and IL-8. Secondly, Tamsulosin alleviated high glucose-induced expressions of MMP-2 and MMP-9. Thirdly, Tamsulosin inhibited the expressions of VCAM-1 and ICAM-1. Importantly, our results indicate that Tamsulosin inhibited high glucose-induced expressions of fibrosis factors such as Col-1 and TGF-ß1. Additionally, we found that Tamsulosin ameliorated oxidative stress via reducing the generation of ROS and preventing the activation of p38. Mechanistically, we found that Tamsulosin attenuated high glucose-induced activation of NF-κB. Based on these findings, we conclude that Tamsulosin could attenuate high glucose-induced injury in GECs through alleviating oxidative stress and inflammatory response.


Assuntos
Células Endoteliais/efeitos dos fármacos , Glucose/efeitos adversos , Glomérulos Renais/citologia , Estresse Oxidativo/efeitos dos fármacos , Tansulosina/farmacologia , Citocinas/metabolismo , Nefropatias Diabéticas/metabolismo , Células Endoteliais/citologia , Fibrose/metabolismo , Humanos , Inflamação/metabolismo
10.
Front Immunol ; 12: 690821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177949

RESUMO

Complement factor B (FB) mutant variants are associated with excessive complement activation in kidney diseases such as atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy and membranoproliferative glomerulonephritis (MPGN). Patients with aHUS are currently treated with eculizumab while there is no specific treatment for other complement-mediated renal diseases. In this study the phenotype of three FB missense variants, detected in patients with aHUS (D371G and E601K) and MPGN (I242L), was investigated. Patient sera with the D371G and I242L mutations induced hemolysis of sheep erythrocytes. Mutagenesis was performed to study the effect of factor D (FD) inhibition on C3 convertase-induced FB cleavage, complement-mediated hemolysis, and the release of soluble C5b-9 from glomerular endothelial cells. The FD inhibitor danicopan abrogated C3 convertase-associated FB cleavage to the Bb fragment in patient serum, and of the FB constructs, D371G, E601K, I242L, the gain-of-function mutation D279G, and the wild-type construct, in FB-depleted serum. Furthermore, the FD-inhibitor blocked hemolysis induced by the D371G and D279G gain-of-function mutants. In FB-depleted serum the D371G and D279G mutants induced release of C5b-9 from glomerular endothelial cells that was reduced by the FD-inhibitor. These results suggest that FD inhibition can effectively block complement overactivation induced by FB gain-of-function mutations.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/imunologia , Ativação do Complemento , Fator B do Complemento/genética , Fator D do Complemento/antagonistas & inibidores , Glomerulonefrite Membranoproliferativa/imunologia , Animais , Síndrome Hemolítico-Urêmica Atípica/genética , Criança , Convertases de Complemento C3-C5/imunologia , Complemento C3b/imunologia , Fator B do Complemento/imunologia , Fator D do Complemento/imunologia , Células Endoteliais/imunologia , Eritrócitos , Feminino , Glomerulonefrite Membranoproliferativa/genética , Hemólise , Humanos , Lactente , Glomérulos Renais/citologia , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Coelhos , Ovinos
11.
Exp Cell Res ; 405(2): 112712, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34181939

RESUMO

Parietal epithelial cells (PECs) are epithelial cells in the kidney, surrounding Bowman's space. When activated, PECs increase in cell volume, proliferate, migrate to the glomerular tuft and excrete extracellular matrix. Activated PECs are crucially involved in the formation of sclerotic lesions, seen in focal segmental glomerulosclerosis (FSGS). In FSGS, a number of glomeruli show segmental sclerotic lesions. Further disease progression will lead to increasing number of involved glomeruli and gradual destruction of the affected glomeruli. Although the involvement of PECs in FSGS has been acknowledged, little is known about the molecular processes driving PEC activation. To get more insights in this process, accurate in vivo and in vitro models are needed. Here, we describe the development and characterization of a novel conditionally immortalized human PEC (ciPEC) line. We demonstrated that ciPECs are differentiated when grown under growth-restrictive conditions and express important PEC-specific markers, while lacking podocyte and endothelial markers. In addition, ciPECs showed PEC-like morphology and responded to IL-1ß treatment. We therefore conclude that we have successfully generated a novel PEC line, which can be used for future studies on the role of PECs in FSGS.


Assuntos
Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/citologia , Humanos , Receptores de Hialuronatos/metabolismo , Rim/citologia , Podócitos/citologia
12.
Lab Invest ; 101(8): 983-997, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33854173

RESUMO

Tripartite motif-containing 27 (TRIM27) belongs to the triple motif (TRIM) protein family, which plays a role in a variety of biological activities. Our previous study showed that the TRIM27 protein was highly expressed in the glomerular endothelial cells of patients suffering from lupus nephritis (LN). However, whether TRIM27 is involved in the injury of glomerular endothelial cells in lupus nephritis remains to be clarified. Here, we detected the expression of the TRIM27 protein in glomerular endothelial cells in vivo and in vitro. In addition, the influence of TRIM27 knockdown on endothelial cell damage in MRL/lpr mice and cultured human renal glomerular endothelial cells (HRGECs) was explored. The results revealed that the expression of TRIM27 in endothelial cells was significantly enhanced in vivo and in vitro. Downregulating the expression of TRIM27 inhibited the breakdown of the glycocalyx and the injury of endothelial cells via the FoxO1 pathway. Moreover, HRGECs transfected with the WT-FoxO1 plasmid showed a reduction in impairment caused by LN plasma. Furthermore, suppression of the protein kinase B (Akt) pathway could attenuate damage by mediating the expression of TRIM27. Thus, the present study showed that TRIM27 participated in the injury of glomerular endothelial cells and served as a potential therapeutic target for the treatment of lupus nephritis.


Assuntos
Proteínas de Ligação a DNA , Proteína Forkhead Box O1 , Glomérulos Renais/metabolismo , Nefrite Lúpica/metabolismo , Proteínas Nucleares , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/citologia , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Glomérulos Renais/citologia , Glomérulos Renais/patologia , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922367

RESUMO

The actin cytoskeleton of podocytes plays a central role in the functioning of the filtration barrier in the kidney. Calcium entry into podocytes via TRPC6 (Transient Receptor Potential Canonical 6) channels leads to actin cytoskeleton rearrangement, thereby affecting the filtration barrier. We hypothesized that there is feedback from the cytoskeleton that modulates the activity of TRPC6 channels. Experiments using scanning ion-conductance microscopy demonstrated a change in migration properties in podocyte cell cultures treated with cytochalasin D, a pharmacological agent that disrupts the actin cytoskeleton. Cell-attached patch-clamp experiments revealed that cytochalasin D increases the activity of TRPC6 channels in CHO (Chinese Hamster Ovary) cells overexpressing the channel and in podocytes from freshly isolated glomeruli. Furthermore, it was previously reported that mutation in ACTN4, which encodes α-actinin-4, causes focal segmental glomerulosclerosis and solidifies the actin network in podocytes. Therefore, we tested whether α-actinin-4 regulates the activity of TRPC6 channels. We found that co-expression of mutant α-actinin-4 K255E with TRPC6 in CHO cells decreases TRPC6 channel activity. Therefore, our data demonstrate a direct interaction between the structure of the actin cytoskeleton and TRPC6 activity.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Glomérulos Renais/citologia , Masculino , Podócitos/citologia , Ratos , Ratos Wistar
14.
Ren Fail ; 43(1): 643-650, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33820486

RESUMO

OBJECTIVE: Although anti-malarial agents, chloroquine (CQ) and hydroxychloroquine (HCQ) are currently used for the treatment of systemic lupus erythematosus, their efficacy for lupus nephritis (LN) remains unclear. Given that upregulation of glomerular Toll-like receptor 3 (TLR3) signaling plays a pivotal role in the pathogenesis of LN, we examined whether CQ and HCQ affect the expression of the TLR3 signaling-induced representative proinflammatory chemokines, monocyte chemoattractant protein-1 (MCP-1), and C-C motif chemokine ligand 5 (CCL5) in cultured human glomerular endothelial cells (GECs). METHODS: We examined the effect of polyinosinic-polycytidylic acid (poly IC), an agonist of TLR3, on MCP-1, CCL5 and interferon (IFN)-ß expression in GECs. We then analyzed whether pretreatment with CQ, HCQ, or dexamethasone (DEX) inhibits poly IC-induced expression of these chemokines using real-time quantitative reverse transcriptase PCR and ELISA. Phosphorylation of signal transducers and activator of transcription protein 1 (STAT1) was examined using western blotting. RESULTS: Poly IC increased MCP-1 and CCL5 expression in a time- and concentration-dependent manner in GECs. Pretreating cells with CQ, but not DEX, attenuated poly IC-induced MCP-1 and CCL5 expression; however, HCQ pretreatment attenuated poly IC-induced CCL5, but not MCP-1. HCQ did not affect the expression of IFN-ß and phosphorylation of STAT-1. CONCLUSION: Considering that TLR3 signaling is implicated, at least in part, in LN pathogenesis, our results suggest that anti-malarial agents exert a protective effect against the development of inflammation in GECs, as postulated in LN. Interestingly, CQ is a rather powerful inhibitor compared with HCQ on TLR3 signaling-induced chemokine expression in GECs. In turn, these findings may further support the theory that the use of HCQ is safer than CQ in a clinical setting. However, further detailed studies are needed to confirm our preliminary findings.


Assuntos
Antimaláricos/farmacologia , Quimiocina CCL5/metabolismo , Quimiocinas/genética , Células Endoteliais/metabolismo , Receptor 3 Toll-Like/metabolismo , Linhagem Celular , Células Cultivadas , Quimiocina CCL5/genética , Cloroquina/farmacologia , Humanos , Inflamação/metabolismo , Interferon beta/metabolismo , Glomérulos Renais/citologia , Nefrite Lúpica/tratamento farmacológico , Poli I-C/metabolismo , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/genética
15.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33848265

RESUMO

Endothelial cells are important in the maintenance of healthy blood vessels and in the development of vascular diseases. However, the origin and dynamics of endothelial precursors and remodeling at the single-cell level have been difficult to study in vivo owing to technical limitations. Therefore, we aimed to develop a direct visual approach to track the fate and function of single endothelial cells over several days and weeks in the same vascular bed in vivo using multiphoton microscopy (MPM) of transgenic Cdh5-Confetti mice and the kidney glomerulus as a model. Individual cells of the vascular endothelial lineage were identified and tracked owing to their unique color combination, based on the random expression of cyan/green/yellow/red fluorescent proteins. Experimental hypertension, hyperglycemia, and laser-induced endothelial cell ablation rapidly increased the number of new glomerular endothelial cells that appeared in clusters of the same color, suggesting clonal cell remodeling by local precursors at the vascular pole. Furthermore, intravital MPM allowed the detection of distinct structural and functional alterations of proliferating endothelial cells. No circulating Cdh5-Confetti+ cells were found in the renal cortex. Moreover, the heart, lung, and kidneys showed more significant clonal endothelial cell expansion compared with the brain, pancreas, liver, and spleen. In summary, we have demonstrated that serial MPM of Cdh5-Confetti mice in vivo is a powerful technical advance to study endothelial remodeling and repair in the kidney and other organs under physiological and disease conditions.


Assuntos
Endotélio Vascular , Microscopia Intravital/métodos , Glomérulos Renais , Análise de Célula Única/métodos , Animais , Endotélio Vascular/citologia , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/fisiologia , Glomérulos Renais/citologia , Glomérulos Renais/diagnóstico por imagem , Glomérulos Renais/fisiologia , Camundongos , Camundongos Transgênicos
16.
J Mol Med (Berl) ; 99(6): 785-803, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33763722

RESUMO

Chronic kidney disease (CKD) is a major public health concern and its prevalence and incidence are rising quickly. It is a non-communicable disease primarily caused by diabetes and/or hypertension and is associated with high morbidity and mortality. Despite decades of research efforts, the pathogenesis of CKD remains a puzzle with missing pieces. Understanding the cellular and molecular mechanisms that govern the loss of kidney function is crucial. Abrupt regulation of gene expression in kidney cells is apparent in CKD and shown to be responsible for disease onset and progression. Gene expression regulation extends beyond DNA sequence and involves epigenetic mechanisms including changes in DNA methylation and post-translational modifications of histones, driven by the activity of specific enzymes. Recent advances demonstrate the essential participation of epigenetics in kidney (patho)physiology, as its actions regulate both the integrity of cells but also triggers deleterious signaling pathways. Here, we review the known epigenetic processes regulating the complex filtration unit of the kidney, the glomeruli. The review will elaborate on novel insights into how epigenetics contributes to cell injury in the CKD setting majorly focusing on kidney glomerular cells: the glomerular endothelial cells, the mesangial cells, and the specialized and terminally differentiated podocyte cells.


Assuntos
Suscetibilidade a Doenças , Epigênese Genética , Regulação da Expressão Gênica , Nefropatias/etiologia , Nefropatias/metabolismo , Glomérulos Renais/citologia , Glomérulos Renais/metabolismo , Animais , Biomarcadores , Metilação de DNA , Células Endoteliais/metabolismo , Histonas/metabolismo , Humanos , Nefropatias/patologia , Glomérulos Renais/patologia , Células Mesangiais/metabolismo , Podócitos/metabolismo , Processamento de Proteína Pós-Traducional
17.
Am J Physiol Renal Physiol ; 320(3): F492-F504, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491562

RESUMO

Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney. An elaborate network of major and minor cell processes, here named maculapodia, were found at the cell base, projecting toward other MD cells and the glomerular vascular pole. The extent of maculapodia showed upregulation by low dietary salt intake and the female sex. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. Electron microscopy of rat, rabbit, and human kidneys and three-dimensional volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD cells and between MD and other target cells.NEW & NOTEWORTHY This study illuminated a physiologically regulated dense network of basal cell major and minor processes (maculapodia) in macula densa (MD) cells. The newly identified dynamic and secretory features of these microanatomical structures suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD and other target cells. Detailed characterization of the function and molecular details of MD cell intercellular communications and their role in physiology and disease warrant further studies.


Assuntos
Mesângio Glomerular/ultraestrutura , Sistema Justaglomerular/ultraestrutura , Glomérulos Renais/ultraestrutura , Túbulos Renais/ultraestrutura , Animais , Comunicação Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Mesângio Glomerular/citologia , Glomérulos Renais/citologia , Túbulos Renais/citologia , Camundongos , Coelhos , Ratos
18.
Pediatr Int ; 63(9): 1075-1081, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33332692

RESUMO

BACKGROUND: Glomerular endothelial cells (GECs) are directly exposed to circulating viral particles in the glomerulus. Although viral infections may trigger the development of acute kidney injury or the worsening of pre-existing chronic kidney disease, the specific molecular mechanisms underlying antiviral reactions via the activation of endothelial Toll-like receptor 3 signaling in the kidney remain to be determined. Interferon (IFN)-induced transmembrane protein 1 (IFITM1), a member of interferon-stimulated gene protein family, is involved in the prevention of viral entry into cerebral vascular endothelial cells, respiratory epithelial cells, and endometrium. However, as far as we are aware, the implication of IFITM1 associated with viral infections in GECs has not been investigated to date. METHODS: Cultured, normal human GECs were treated with polyinosinic-polycytidylic acid (poly IC), a synthesized viral double-stranded RNA, then the expression of IFITM1 was examined by quantitative real-time reverse transcription-polymerase chain reaction and western blotting. To further elucidate the poly IC-induced signaling pathway, the cells were applied to RNA interference against IFN-ß, nuclear factor-κB p65, and IFN regulatory factor 3. We also conducted an immunofluorescence study to examine endothelial IFITM1 expression in biopsy specimens from patients with chronic kidney disease. RESULTS: We found that the activation of Toll-like receptor 3 induced endothelial expression of IFITM1, and that this involved IFN regulatory factor 3 and IFN-ß, but not nuclear factor-κB. Intense endothelial IFITM1 immunoreactivity was observed in biopsy specimens from patients with lupus nephritis. CONCLUSIONS: Antiviral reaction-related endothelial expression of IFITM1 may be involved, at least in part, in the development of particularly in lupus nephritis. Further detailed studies of the implication of interferon stimulated genes, including IFITM1 in GECs are needed.


Assuntos
Antígenos de Diferenciação/genética , Células Endoteliais , Glomérulos Renais/citologia , Poli I-C , Células Cultivadas , Humanos , Fator Regulador 3 de Interferon , Interferon beta , Receptor 3 Toll-Like , Fator de Transcrição RelA
19.
Kidney Blood Press Res ; 46(1): 74-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326977

RESUMO

INTRODUCTION: Various viruses including a novel coronavirus (SARS-CoV-2) can infect the kidney. When viruses invade the glomeruli from the bloodstream, glomerular endothelial cells (GECs) initiate the innate immune reactions. We investigated the expression of interferon (IFN)-induced protein with tetratricopeptide repeats (IFIT) 1/2/3, antiviral molecules, in human GECs treated with a toll-like receptor (TLR) 3 agonist. Role of IFIT1/2/3 in the expression of C-X-C motif chemokine ligand 10 (CXCL10) was also examined. METHODS: Human GECs were cultured and stimulated with polyinosinic-polycytidylic acid (poly IC), a synthetic TLR3 agonist. Real-time qPCR, Western blotting, and ELISA were used to examine the expression of IFIT1/2/3, IFN-ß, and CXCL10. RNA interference against IFN-ß or IFIT1/2/3 was also performed. RESULTS: Expression of IFIT1/2/3 and CXCL10 was induced by poly IC in GECs. The inductions were inhibited by RNA interfering of IFN-ß. Knockdown of IFIT1/2/3 decreased the CXCL10 expression. Knockdown of IFIT3 decreased the expression of IFIT1 and IFIT2 proteins. CONCLUSION: IFIT1/2/3 and CXCL10 were induced by poly IC via IFN-ß in GECs. IFIT1/2/3 may increase the expression of CXCL10 which induces lymphocyte chemotaxis and may inhibit the replication of infected viruses. These molecules may play a role in GEC innate immune reactions in response to viruses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Reguladoras de Apoptose/biossíntese , Quimiocina CXCL10/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Glomérulos Renais/metabolismo , Proteínas de Ligação a RNA/biossíntese , Receptor 3 Toll-Like/agonistas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Quimiocina CXCL10/genética , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glomérulos Renais/citologia , Glomérulos Renais/efeitos dos fármacos , Poli I-C/farmacologia , Proteínas de Ligação a RNA/genética , Receptor 3 Toll-Like/metabolismo
20.
Dev Biol ; 470: 62-73, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197428

RESUMO

Recent advances in stem cell biology have enabled the generation of kidney organoids in vitro, and further maturation of these organoids is observed after experimental transplantation. However, the current organoids remain immature and their precise maturation stages are difficult to determine because of limited information on developmental stage-dependent gene expressions in the kidney in vivo. To establish relevant molecular coordinates, we performed single-cell RNA sequencing (scRNA-seq) on developing kidneys at different stages in the mouse. By selecting genes that exhibited upregulation at birth compared with embryonic day 15.5 as well as cell lineage-specific expression, we generated gene lists correlated with developmental stages in individual cell lineages. Application of these lists to transplanted embryonic kidneys revealed that most cell types, other than the collecting ducts, exhibited similar maturation to kidneys at the neonatal stage in vivo, revealing non-synchronous maturation across the cell lineages. Thus, our scRNA-seq data can serve as useful molecular coordinates to assess the maturation of developing kidneys and eventually of kidney organoids.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Rim/crescimento & desenvolvimento , Rim/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula , Regulação para Baixo , Rim/citologia , Rim/embriologia , Glomérulos Renais/citologia , Glomérulos Renais/embriologia , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/metabolismo , Transplante de Rim , Túbulos Renais/citologia , Túbulos Renais/embriologia , Túbulos Renais/crescimento & desenvolvimento , Túbulos Renais/metabolismo , Camundongos , Podócitos/citologia , Podócitos/metabolismo , RNA-Seq , Análise de Célula Única , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...